D

PRODUCT CATALOCUE

COMPANY PROFILE

DIPLAST has started manufacturing of uPvc Conduit Pipas in the year 1972 with registering continucus growth year by year, the company has since then grown large into manufacturing a wide range of uPvC Pressure Pipes \& uPvc Fittings, Plumbing Pipes \& Fittings, Column Pipes. SWR Pipes \& fitings, Conduit Pipes \& Filtings Water Tanks, Tolet Sitting Bench, Dustbin, Trolley Blow Moulded Tenks, Compost Bin, CPVC Ppes \& Fitings, PP-R Pipes \& Fitings atc. The basic objective of the company is to provide the service to our customer with better cuality products and better commitrients

The company is well famous in the market for its commitments to customer and for best delivery of products to the customer The company has plants located in Mohali (Punjab) \& Kala Amb (Himachal Pradesh) with high technclogy and automatic machines, wel qualfied and skiled manpower, best policies and supariar laboratory with the objective to minimize the product cosl and provide competitive Price of products in the market. The strength of company is its committed management team, and supreme combination of experenced, technical and good decision makers.

OURMISSION

The company has selfassurance to become the largest manufacturer and supplier of plastic industries on natonal and Global level. Targel to achiave the total timover of more than 100 crore.

OUR VISIONS

To serve the people, society and nation by providing worldclass quality products.

Our Assurance for Quality

Quality being the for most concern of our organisation, we lay stress on the production of only qualitative range of products.
Our team of quality experts ensures zero defects at customer end as they stringently check the entire lot before dispatch.

Certification \& Accreditations

Research \& Development

At DIPLAST learning is a continuous process. With this is mind we set up our own ISO certfied research and development unit, which integrates technology, understanding of the market and consumer needs and demands, to bring out excellent, effective \& efficient designs.
Our R \& D department is equipped with latest technique. Our special testing laboratory develops \& tests products for efficiency. A highly skilled team of mechanical \& plastic engineers work, round the clock to manufacture products of the highest quality.

Our Quality

Ensures long term prosperity. Delivering a long term prosperity and exponential growth, be delivering efficient solutions is a result of the supreme quality ingrained in the vision and in each process of the production.

We believe in quality.

The supreme quality ingrained in the vision as well as in each process of the production has helped us deliver long term prosperity and exponential growth.
At DIPLAST We believe in quality. We adhere to the most stringent quality check at every stage of our production process. Every product at DIPLAST undergoes an array of energy efficient test, before coming out of the plant. Quality Assurance at DIPLAST is backed by team of well qualifed and well trained engineers.
Our fully automatic testing laboratory confirms the quality of the final product. We also conduct inspection from certified agency such as BIS to ensure the highest level of quality. We strictly adhere to the various national \& international norms \& standards like ISI, ASTM and ISO.

Our Services

Answer to your needs for efficient growth
DIPLAST, we believe that our valuable relation with our patrons begin once we deliver our products, because we value our customer's needs in understanding, and also in maintaining our products. We have a specialized team of customer service provider which comprise of the most qualified and experienced technocrats; they cater to every technical as well as non- techrical assistance for our customer's delight.

Un-Plasticized Polyvinyl chloride Pipe for Partable water supplies (UPvc Pipes)

Range: 20 mm to 315 mm Outer Diameter
Pressure Rating: $2.5 \mathrm{Kgf} / \mathrm{cm}^{2}$ to $12.0 \mathrm{Kgf} / \mathrm{cm}^{2}$
Standard: IS 4985:2000
Colour: Light Grey, Off White
Length: available in $10^{\circ}, 12^{\prime}$ and 20°
Types: Plain ended

Features

Socketed pipe for solvent cement jointing

- Suitable for portable water supplies
- Light weight and fittings greaty reduce handling, transportation and installation costs.
- DIPLAST uPVC Pressure pipes system offers a reliable piping system, which is highly resilient tough \& durable and long lasting
- Smooth inside surlace provide high flow characteristics than Gl, Cl and AC Pipes
- Hygienic \& odourless for portable water
- Termite Proof
- Very Low Friction Losses
- Easy installation \& hancling
- Corrosion free
- inert to chemical

|Application

- Water supply for agriculture and irrigation systems.
- Power \& telecommunication cable ducting.
- Rural \& urban water supplies, gas and oil supplies.
- Building water supply application.

ISpecial Features \& Identity

- Intemal surfaces are very smooth which reduces friction loss.
- Specification followed: IS 4985:2000
- UV stabilized for use in sunlight
- Elastomeric sealing ring pipes to prevent leakage.
- Very high pressure resistant capacity.

Technical parameters |S 4885:2000
(All Dimension in mm)

Pipe Sine:	Nominal Sine (OD)	Mean cutside diametor TVinMax	OD.at any point MinMax	Cless 4 0.25 Mpa (2.5 Kglam2) MinMax	Class. 1 $0.40 \mathrm{Mpa}(6$ $\mathrm{kgtlan} 2)$ MinMax	Class:1 0.6 Mps (6 Kgifon2] MinMax	Class-1 0.8 Mpa is Kgticm2) MiniMax	Class. 1 1.00 Mpa (10 Kgffcm2) MinMax	$\begin{gathered} \text { Class-1 } \\ 1.25 \mathrm{Mpa} \\ 12.5 \mathrm{Kg} \text { flem2 } \\ \text { MinMax } \end{gathered}$
0.5	20	20.0-20.3	19.5-20.5					1.1-1.5	1.4-1.8.
0.75	25	25.0-253	24.5-25.5				1.2-1.6	1.4-1.3	1.7-2.1
1.50	32	32.0-32.3	31.5-32.5				1.5-1.9	$1.8 \cdot 22$	2.2-2.7
1.25	40	$40.0-40.3$	39.5-40.5			1.4-1.8	1.8-2.2	2.2-27	2.8-3.3
1.5	50	$50.0-50.3$	49.5-50.5			1.7-2.1	2.3-2.8	28-3.3	3.4-4.0
2.0	63	63.0 -63.3	62.2-6.8.8		1.5-1.9	$2.2 \cdot 2.7$	2.8-3.3	3.5-4.1	4.3-5.0
2.5	75	75.0-75.3	74.1-75.9		1.8-22	26-2.7	1.4.4.0	42-4.9	5.1-5.9
3.0	90	90.0-90.3	88.9-91.1	1.3-17	2.1-26	3.1-3.7	4.0-4.6	50.57	$6.1-7.1$
4.05	110	110.0-110.4	168.6-111.4	1.6-2.0	2.5-3.0	$3.7 \cdot 4.3$	4.9-5.6	$6.1-7.1$	7.5-8.7
4.5	125	1250.125.4	123.5-128.5	1.8 .22	29.34	$4.3 \cdot 5.0$	5.6 .6 .4	6.9-8.0	$8.5-9.8$
5.0	140	140.0 - 140.5	138.3-141.7	2.0-2.4	$3.2-3.8$	$4.8 \cdot 5.5$	$6.3 \cdot 7.3$	7.7-8.9	$9.5 \cdot 11.0$
6.0	160	160.0-160.5	158.0-162.0	2.3-28	3.7-4.3	$54-6.2$	7.2-8.3	$888-102$	10.9 -126
7.0	180	180.0-180.6	177.8-1822	3.6-3.1	4.2-4.9	6.1-7.1	88.9 .2	929.11.4	12.2-14.1
8.05	200	200.0-200.6	197.6.200.4	2.9.3.4	4.6-53	68.7 .9	89.10 .3	11.0 - 12.7	13.6 .157
9.0	225	225.0-225.7	222.3-202. 4	3.3-3.9	5.2-6.0	$7.6-8.8$	100. 11.5	12.4 - 14.3	15.3. 17.6
10.0	259	250.0-250.8	247.0-253.0	3.6-4.2	5.7-6.5	8.5-9.8	11.2-12.9	13.8-15.9	$17.0+19.6$
11.0	298	200.0-280.9	278.8-283.4	4.1-4.8	6.4-7.4	9.5-11.0	12.5-14.4	15.4-17.8	19.0-21.9
12.0	315	315.0-316.0	311.2-318.8	4.6-5.3	7.2-8.3	10.7-12.4	10.7-12.4	17.3-19.9	21.4.24.7

PVC Pipe Fitting

Salient Features:

General Dimension are conforming to IS 7834-87
Wall thickness is designed to meet required working Pressure
Made to close dimensional tolerance
Different working Pressure rating up to $10 \mathrm{Kg} / \mathrm{cm}^{2}$ for different sizes.

Sacket

Size in mm	Available Pressure Rating in Kgflcm^{2}
$20-315 \mathrm{~mm}$	4,6

Application: These are used for joining of two uPvc Pipes.

Plain Ellow 90°

Size in mm	Available Pressure Rating in Kgficm^{2}
$40-160 \mathrm{~mm}$	4,6

Application: These are used for short turns of 90°. These
 are not advisable on large pipeline involving high Pressure

Equal Tee

Size in mm	Available Pressure Rating in Kgficm 2
$40-160 \mathrm{~mm}$	4,6

Application: These are used for bypass and taking equal size service line out of main line at 90°.

Ellow 45°

Size in mm	Available Pressure Rating in Kgifem
$90-110 \mathrm{~mm}$	4,6

Application: These are used for short turns of 45°.

OFf Set Bend

Size in mm	Available Pressure Rating in Kgf/cm ${ }^{2}$
$90-110 \mathrm{~mm}$	4,6

Application: These are used for short turns of 45°.

Reducing Elbow

Size in mm	Available Pressure Rating in Kgficm
$110 \times 90 \mathrm{~mm}$	4,6

Application: These are used for bypass and taking lower diameter servica line out of main line.

Reducing Tee

Size in mm	Available Pressure Rating in Kgficm
$110 \times 90 \mathrm{~mm}$	4,6

Application: These are used for bypass and taking lower diameter service line out of main line.

Dour Elbow

Size in mm	Available Pressure Rating in Kgficm ${ }^{2}$
$75-110 \mathrm{~mm}$	4,6

Application: Function is same as a plain elbow with a threaded door for cleaning,

Door Tee

Size in mm	Available Pressure Rating in $\mathrm{Kg} / \mathrm{cm}^{2}$
$75-110 \mathrm{~mm}$	4,6

Application: Function is same as a plain tee with a threaded door for cleaning purpose.

Reducer Socket

Size in mm	Available Pressure Rating in Kgifcm ${ }^{2}$
40×25	10,12
50×40	6,10
75×63	$4,6,10$
90×75	$4,6,10$

Application: These are used to convert the service line into small extra small line.

End Cap

Size in mm	Available Pressure Rating in $\mathrm{Kgf/cm}$
$20-250 \mathrm{~mm}$	4,6

Application: These are used to close the end of pipe line.

Vent Cowel

Size in mm	Available Pressure Rating in Kgffem^{2}
$63-110 \mathrm{~mm}$	4,6

Application: Use as a cap on the top of the Vertical line. Also help in release of foul gases.
P. Trap

Slze in mm	Available Pressure Rating in Kgf/cm²
$125 \times 110 \mathrm{~mm}$	4,6
$110 \times 110 \mathrm{~mm}$	4,6

Application: To provide water seal \& efficient functioning of the drainage system.

Nahni Trap

Size in mm	Available Pressure Rating in Kgficm^{2}
$110 \times 110 \mathrm{~mm}$	4,6
$110 \times 90 \mathrm{~mm}$	4,6
$110 \times 75 \mathrm{~mm}$	4,6
$110 \times 63 \mathrm{~mm}$	4,6

Application: For draining waste from Bathroom / Wash basin out of the main line.

Diplast Solvent Cement

DIPLAST is leading manufacturer to produce reliable solvent cements for use with PVC \& CPVC Pipe \& fittings, Each formulation has been developed for a specific application and is subject to the strictest quality control program in the industry. This program guarantees the most consistent and highest quality solvent cements commercially available.

To make consistently good joints, the following points should be clearly undersiood:-

1. Check the pipe \& fitting for dry fit before cementing. For proper interierence fit, fitting should go over end of pipe easily but become tight about $1 / 3$ to $2 / 3$ of the way on. Too tight a fit is not desirable; you must be able to fully bottom the pipe in the socket during assembly. If the pipe and fitting are not out of round, a satisfactory joint can be made.
2. The joining surfaces must be softened and made semifluid.
3. Sufficient cement must be applied to fill gap between the pipe \& fitting.
4. Assembly of pipe and fitings must be made while the surfaces are still wet and cement is still fluid.
5. Joint strength develops as the cement dries, In the tight part of the joint the surfaces will tend to fuse together in the loose part, the cement will bond to both surfaces.

Jointing Procedure for DIPLAST PVC PRESSURE PIPES

Procedure for cutting of pipe and application of solvent cement
The professional installer should be able to successfully assemble Rigid PVC Pipe and fittings by following
The Diplast solvent cementing with primer instuctions listed below.

1. As pipe diameter increases, so does the difficulty in installing it
2. Use of proper size applicator Brush is even more necessary to ensure enough cement is applied to fill the larger gap that exists between the pipe and fittings.
3. End of pipe must be out square and chamfered.
4. Clean the pipe properly before applying solvent cement.
5. Increase size of joining crew:-

$4^{\prime \prime}-6^{\prime \prime}$: 1-2 Persons

$6^{\prime \prime}-8^{\prime \prime}:$ 2-3 Persons
$10^{\prime \prime}-12^{\prime \prime}: 3-4$ Persons
6. It is important in large diameter jointing that the primer and cement be applied simultaneously to the pipe and fittings. Make sure to apply a second, full layer of cement to the pipe.
7. Large diameter pipe and fittings require longer set and cure times. "(in cold weather, a heat blanket may be used to speed up the set and cure times).
8. If pipe is to be buried, make as many joints as possible above ground, then after joints have cured, carefully lower into trench. Never bury emply cans, brushes cans or anything else containing wet cement, primer or cleaner next to the pipe.

Depending upon temperature, different sizes requires different timings as shown in the table:Average Initial Set Schedule

Temperature Range	Pipe sizes /1/2" to $1 / /^{\prime \prime}$	Pipe sizes $1 / 2^{\prime \prime} \text { to } 2^{\prime \prime}$	Pipe sizes $21 / 2^{\prime \prime} \text { to } 8^{\prime \prime}$	Pipe sizes $10^{\circ} \text { to } 15^{\prime \prime}$
$60^{\circ}-100^{\circ} \mathrm{F}$	2 Minutes	5 Minutes	30 Minutes	2 Hours
$40^{\circ}-60^{\circ} \mathrm{F}$	5 Minutes	10 Minutes	2 Hours	8 Hours
$0^{\circ}-40^{\circ} \mathrm{F}$	10 Minutes	15 Minutes	12 Hours	24 Hours

Note: Initial set schedule is the necessary time to allow before the joint can be carefully handled. In damp or humid allow 50\% more set time.

Storage C Handling

Store in the shade between $40^{\circ} \mathrm{F}$ and $110^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C}\right.$ and $44^{\circ} \mathrm{C}$) or as specified on label. Keep away from heat, dark, open flame and other source of ignition. Keep container closed when not in use. If the unopened container is subjected to freezing, it may become extremely thick or jelled. This cement can be placed in a warm area, where after a period of time, it will return to its original usable condition. But such is not the case when jellying has taken place because of actual solvent loss-for example, when the container was left open too long during use or not properly sealed after use. Cement in this condition should not be used and should be properly discard.

DIPLAST solvent cement are formulated to be "used as received" in original containers. Adding thinners or primers to change viscosity is not recommended. If the cement is found to be jelly like and not free flowing, it should not be used. Containers of cement should be shaken or stirred before using.

Use only DIPLAST Solvent cement with DIPLAST PVC \& CPVC Pipes for long life \& durable Joints.
Packing Available in Solvent cement is $100 \mathrm{ml}, 250 \mathrm{ml}, 500 \mathrm{ml} \& 1000 \mathrm{ml}$

(All Dimension in mm)																	
Diameter of Pipe (mm)	20	25	32	43	50	6	75	90	110	140	100	180	200	225	250	280	315
Appu No. of Joints entich can be made per liter of solvent gementif	354	270	225	100	130	125	103	79	54	36	27	25	15	12	9	7	5

DIPLAST uPVC Plumbing Pipes \& Fittings

Product Name: ASTM (Plumbing) Pipes \& Fittings
Pipe : As Per ASTM -D 1785 Schedule $40 \& 80$
Fitting: As Per ASTM -D 2467 Schedule 80
Range : $0.5^{\prime \prime}$ to $2^{\prime \prime}$
Colour : White
Length : Available in 3Meter \& 6 Meter
Types : Plain \& Thread ended
Standard working Temperature: up to $60^{\circ} \mathrm{C}$ continuously and upto $90^{\circ} \mathrm{C}$ for short time.

DIPLAST uPVC Plumbing Pipes \& Fittings

Features

- The pipes are odouress and hygienic thus extremely suitable for portable supplies.
- Allows seamless operation up-to $60^{\circ} \mathrm{C}$ continuously and upto $90^{\circ} \mathrm{C}$ for short time
- Light weight
- Resistant to corrosion
- Non toxic
- Weather resistance
- Easy to installation
- Fire proof and termite proof
- Good thermal and electrical Insulation
- Inert to chemical

Application

- Cold water supply in buildings
- Industrial processing lines
- Swimming pools
- Salt water lines
- Aggressive /corrosive fluid transportation.
- Dye ,chrome, zinc plating and tanning plants
- Sugar, paper and distillery industries
- Coal washing and ash handling

Technical parameters

Nominai Diameter		Outside Diameter (mm)		Schedule 40				Schedule 80			
		\qquad		Working Pressice		WallThickness (mm)		Working Pressure			
inch	mm			Mps	Psi			Mps	Psil		
$0.50{ }^{\circ}$	15	213	+ +0.10	2.77		2.07	300	3.73	+ +0.51	2.50	420
$0.75{ }^{\text {²}}$	20	26.7	+1-0.10	2.87	t/-0.51	1.65	240	3.91	+1-0.51	2.34	340
$100{ }^{\prime \prime}$	25	33.4	+1-0.13	3.38	+1.0.51	1.55	225	4.55	+1.0.53	2.21	320
$125^{\prime \prime}$	32	42.2	+6.0.13	3.56	+ +0.51	1.23	185	4.85	+ 0.0 .58	1.79	260
1500°	40	48.3	+1-0.15	3.68	+ +0.51	1.14	165	5.08	+4-0.61	1.65	240
2.00^{n}	50	60.3	+1-0.15	3.91	+ +-0.51	0.90	140	5.54	+1-0.66	1.38	200

PVC Plumbing Fitting

DIPLAST uPVC Pipe Fittings in SCH 80 AS per ASTM D 2467

Elbow 90°

Size(inch)	I.D.(mm)	Std.Packing
$1 /{ }^{\prime \prime}$	21.34	100
$3 / /^{\prime \prime}$	26.67	60
$1^{\prime \prime}$	33.40	30
$11 / 4^{\prime \prime}$	42.16	18

Tee

Size(inch)	1.D.(mm)	Std.Packing
$1 /{ }^{\prime \prime}$	21.34	100
$3 / /^{\prime \prime}$	26.67	60
$1^{\prime \prime}$	33.40	30
$11 / 4^{\prime \prime}$	42.16	18

Sacket

Size(inch)	I.D. (mm)	Std.Packing
$1 / 2^{\prime \prime}$	21.34	100
$3 / /^{\prime \prime}$	26.67	60
$\mathbf{1}^{\prime \prime}$	33.40	30
$\mathbf{1} 1 / 4^{\prime \prime}$	42.16	18

Diplast uPVC Electrical Pipes \&Fittings

We are one of the leading and biggest uPVC Electrical Conduits \& accessories manuiactures of North India.

Rigid PVC Conduits Confirming To Indian Standards:
DIPLAST Rigid PVC Conduits are manufactured in accordance with Bureau of indian standard specification IS: 9537(Part 3) in the range of 20 mm to 50 mm with light, medium and heavy ranges

Dimensional Details of uPVC Conduits as per IS 9537(part 3)

0. Din mm	Tolarance In mm	Light			Medium			Heavy		
		$\begin{aligned} & \mathrm{Min} \\ & \frac{1.0}{} \end{aligned}$		Max Wall Thickness	$\begin{aligned} & \operatorname{Min} \\ & \mathrm{ID} \end{aligned}$			$\frac{M i n}{10}$	$\begin{array}{\|c\|} \hline \text { Min } \\ \text { Wall } \\ \text { Thicknoss } \end{array}$	$\begin{array}{\|c\|} \text { Max } \\ \text { Wall } \\ \text { Thickness } \end{array}$
20	-0.3	17.4	1.15	1.30	16.9	1.40	1.55	15.80	1.95	2.10
25	-0.3	22.3	1.25	1.45	21.40	1.00	1.80	20.60	200	2.20
32	-0.4	28,6	1.50	1.70	27,80	1.00	2.40	26.60	2.50	2.70
40	-0.4	35.8	1.90	2.10	35.40	2.10	2.39	34.40	2.60	2.80
60	-0.5	45.1	2.2	2.45	44.80	2.60	2.85	43.20	3.15	3.40

Dimensional details of Rigid uPVC Non IS| Conduit pipes:

Size	Wall Thickness					
49 mm	1.0	1.2	1.4	1.6	2.0	
25 mm	1.0	1.2	1.4	1.6	2.0	
32 mm				1.9	2.2	
4 mm				2.0	2.1	2.5
53 mm					2.0	
63 mm						3.0

All the above Pipes are available in the standard length of 3 mtrs only.

DIPLAST uPVC Canduit Pipe Filttings

1) Junction Boxes

1 Way Terminal
2 Way Through
3 Way Tee
4 Way Intersection

2) Deep Junction Boxes from 2 mm m 10 25m

2) Bends Aavilabily

20 mm to 63 mm

Advantages:

High corrosion Resistance: DIPLAST Rigid PVC Conduits are non-corrosive by nature and are not attached by corrosive, salty atmosphere \& excessive humidity. They are immune to chemical and galvaric corrosion henoe they are ideal electrical Conduts.

Fire Retardant

DIPLAST Rigid PVC Conduts do not support combustion and when the source of ignition is removed they are self-extinguishing hence they are safer than other pipes.

Conductivity

DIPLAST Rigid PVC Conduits do not support combustion and when the source of ignition is removed they are self-extinguishing hence they are safer than other pipes.

Lightweight

DIPLAST Rigid uPVC Conduits have low specific gravity which mplies that it is much lighter than the the pipes made from more tradional materials, DIFLAST pipes are therefore easier to handle and longer or larger sections can be installed easily. This results in reduced transportation \& instalation costs.

Easy Wiring

Diplast conduits have smooth intericr walls which help in reduced friction thus helping ineasy wiring.

Easy installation

Diplast rigid uPVC conduits can be shaped \& joined without difficulty. DIPLAST pipes are joined by solvent cement which is simpler, cheaper \& easier.

Strength

Diplast rigid uPVVC electrical conduit have high mechanical strength that is attested by lests conducted as specified IS 9537 (part 3) of 1983 . Hence they can be used both in open /surface and concealed instalation

No Maintenance

DIPLAST Conduits need no mainterance due to their excellent weatherng properties.

Durability

Diplast Rigid electrical conduit last for a year.

High Corrosion Resistance

DIPLAST Rigid UPVC Conduits are non-corrosive by nature and are not attached by corrosive, salty atmosphere \& excessive humidity. They are immune to cherrical and galvanic corrosion .hence they are ideal electrical Conduits.

DIPLAST PP-R Pipes \& Fittings

The raw material of DIPLAST Pipes and fittings is polypropylene random co-polymer(PP-R).
This matenal due to high quality, is the most reliable system to be employed in plumbing and water supply systems. DIPLAST PP-R Products are physically superior, hygienically safe and non-carcinogenic. Polypropylene (PP) is general polyolefin plastic. It has excellent heat resistant and has higher pressure resistance. PPR - Pipes \& fittings are growing fast in China and Turkey, due to this system approach. PP-R has more impact strength than other materials, PP-R also has more long term heat resistance and creep periormance. At the same femperature and internal pressure PP-R have longer useful life. PP-R pipes \& fittings is the best water supply material because it can operate 50 years at 70% and long term internal pressure.

Application

- DIPLAST PP-R pipes \& fitings network for cold and hol installation, i.e.; in Residential Buildings, Hospitals,
- Hotels, Office \& School buildings, Solar Plants floor heating etc.
- DIPLAST Pipe networks for compressed Air Plants
- DIPLAST Pipe network for swimming pool Fadilities.
- DIPLAST Pipe netvorks for industry ie: ; Transportation of Aggressive Fluids(Ácids etc.)
- Transport of Liquid Foods as DIPLAST PP-R pipes and fitings are food grade

Properties

- Non corrosive.
- Leak proof and frost proof.
- Non decaying non-deforming.
- Non contracting diameter.
- More than 50 years service life.
- Wide variety ranging form 16 mm to 110 mm to suit your diverse needs
a Smooth inner surface thus reducing the operational pressure required by the motoripump.
- High chemical resistance.
- No bacterial and moss reproduction within the pipes.
- Resistance to high femperature ($95^{*} \mathrm{C}$).
- Heat preservative and energy saving(no need for installation)
- Taste odour neutral.
- No reaction with salts and acids.
- UV stablizer
- Recyclable- for the benefit of environment
- The pipe is used for conveying Hot \& Cold Water flluids/chemicalicompressed air in vanous plumbing installation.
- Double layer PP-R pipes for indoor/outdoor instalations.
- Outer layer (Green color) PP-R is UV resistant, which makes pipe suitable for use under direct sunlight inner layerjwhite color) PP-R is antimicrobial which provides hygiene and protection from internal bacterial grouth

Gomparisun between Pp-R Pipes $\frac{\square}{\text { Galvanized Pipe }}$			
S.N0	Property/Parameter	PP-R Pipes	Galvanized iron
1	Service Lile(Years)	$\times 50$	5-15
2	Standard lengtimeter)	3-6	6
3	Jvinting mehod	Simple Thermal Fusion	Threaded joint
4	Skiil	Doit Yoursalf	Reqjires eupet Pumber
5	Jointing Time	Few second	Few hours
6	Strength of icinis	Fusien of Matenas. Perfect Homogeneity	Surice Homogensity
7	Line Commissioning Time	Mose than 4 his/ Hatiday	Takes longer
8	Minimum Labor	One person requived	2 person requived
9	Briteness Characiaristics	Highly resistant	Resistant
10	Carrosion resistance	Non carosive:	Very weak
11	Chemical resistant	Excelent	Poor
12	Installation commerience	Simple 8 convenient	Diflicalt
13	Jointing Reliability	Exoellent	Good
14	Hygenic Fector	Food grade-No Leacting- Bactariogy Neutral	Unlyygenic due to Zncoside Forration
15	Inner surface smodthess	Expellent	Semi smooth
16	Easiness in repair \& Maintenance	Very easy	Troublasoma
17	Wall thickness 0020 mm	3.4 mm	2.8 mm
18	Water Freezing Insce Pipelins	Does not burst.	Burst
19	Joint Leak Prothess	100\% Leak Proot Entre Service LF\%	Average-Laaks With Time
20	Eco-Friendiness	Eos Friends. No Hawfu Suestances Proucesd Curng Processing	No

OIPLAST PR-R Pipes Specification as per ls						
S.NO	Product	mm	Dimension inch	SDR11/PN10	Thickness SDRTATRNI6	SDR6PN20
1	Pipe 20 mm	20	\%	1.9	2.8	3.4
2	Pige 25 mm	25	管	2.3	3.5	4.2
3	Pipe 32mm	32	1	2.9	4.4	5.4
4	Pipe 40 mm	40	1-1/4*	3.7	5.5	6.7
5	Pipe 50 mm	50	$1-1.2{ }^{\circ}$	4.6	6.9	8.3
6	Pipe 63mm	63	2^{*}	5.8	8.6	10.5
7	Pipe 75 mm	75	2-1/2*	6.8	10.3	12.5
8	Pipe 90 mm	90	$3{ }^{\text {. }}$	8.2	12.3	15.0
9	Pipe 110mm	110	$4^{\prime \prime}$	10.0	15.1	18.3

DIPLAST PP-R Pipes \& Fittings

S.NO	Product		Application il
1	Coupter	$20 \mathrm{~mm}-110 \mathrm{~mm}$	The coppler is used to join two pipes to each other by means of fusion widng. ts adavantage allows for the joining of shot length ppes or replacing fauty peces of pipes

S.NO	Product		Application
2	Elbow	$20 \mathrm{~mm}-710 \mathrm{~mm}$	The elbow is used at ahere pipeinas makes a tum of 90°
S.NO	Product.		Application
3	Tee	$20 \mathrm{~mm}-110 \mathrm{~mm}$	Teeis tsed to take an ouflat' branch at 90° rom main ine.

S.NO	Product		Application
5	Tark Nppie	$20 \mathrm{~mm}-410 \mathrm{~mm}$	This is used to take outlet from a tark

SNO	Product		Application
6	Wal Camp	$20 \mathrm{~mm}-110 \mathrm{~mm}$	This is used to secure the pipe line af its istallad position on the wal.

SNO	Product		Application
7	End Cap	$20 \mathrm{~mm} \cdot 110 \mathrm{~mm}$	End Cap is used as a stopper at the end of pipeine. t also seals the top and of pipsine for pressure leakage test after compistion of piping work

SNO	Product		Application
8	Union	$20 \mathrm{~mm}-110 \mathrm{~mm}$	Pisin uricn is used to join swo plpes co-axially. It Provides faciity of repaising the joint, basically for maintenance.

SNO	Product		Application
9	Gets Valve	$20 \mathrm{~mm}-110 \mathrm{~mm}$	Gath velve is usec to stat, regulate and stop the water flow in pipeline

S.NO	Product		
10	Bal Vathe	$20 \mathrm{~mm}-110 \mathrm{~mm}$	Aall Valve is used to start regiate and stop lhe water fow in ppaline.

SNO	Product		Application
11	Reducing Tee	20 mmad 6 mm $-56 \times 50 \mathrm{~mm}$	This is used to taka a smallar size branch pipe at 50°

SNO	Product		Application
12	Reducing Ebow	20 mmotienti $.90 \times 50 \mathrm{~mm}$	This is used to join wo different sizes of pipes at a 90° comerlitum.

SNO	Product		Application
13	Femade Threaded Cupler	$16 \times / /^{\prime}-63 \times 2$	This is used to join male freaded metalic litings with a PP-R C Pipe Ire.

S.NO	Product		Application
14	Male Threaded Coupler	$16 \times 1 / 2-63 \times 2$	This is used to join fersate threaded metalic Ftings with a PP-R C Pipe line.

SNO	Product		Application
15	Femae Tireaded Elbon	$16 \pi m \times 5 / 2$ $63 m m u 2^{\prime}$	This is used to join mate threaded metalic fting wh PP-R line at 50° comerturn

SNO	Product		Application
16	Male Threaded Ebaw	$\begin{aligned} & 16 \mathrm{~mm} \times V_{1 / 2}^{\prime \prime} \\ & 63 \mathrm{~mm} \times 2 \end{aligned}$	This is used tojoin fernale theaded netalic fittrg wth PP. R line at 90° comertum

SNO	Product		Application
17	Fenule Trieaded Tee	$16 \mathrm{mmx} / \mathrm{I}_{2}$. $63 m m 2^{2}$	This is used to takn of an cutbet from a PP-R line, using a male thresded metallc fitorg al 90°.

SNO	Product		Application
18	Male Trieaded Tee	$16 \mathrm{mmx} \mathrm{K}_{2}$. 63 minu ${ }^{\prime}$	This is used to take ous an culletfrom a PP-R line, using a female tireaded metalic ftring at 90°,

S.NO	Product		Application
19	Reducer	$20 \times 16 \mathrm{~mm}$ $90 x 50 \mathrm{~mm}$	This is used to co axialy jipha bigger daneter ppe to a smal diameter pipa

SNO	Product		Application
20	Long Plug	$\sqrt[3]{2} \cdot 1^{-}$	This is used to seal pipa ands having a ternve treaded filfing .itis also used for leating the pipeline

S.NO	Product		Application
21	Shor Plug	$1 / z^{2}-/ / 2$	This is used to seal pipe ends havng a fermie treaded fiting it is also used tor teeting the pipeine

SNO	Product		Application
22	Pipe Cutter	20 mm -32mm	This is used for auting pp-Rppas rery smootily.

SNO	Product		Application	
23	Jointing Nachine	$20 \mathrm{~mm}-32 \mathrm{~mm}$	 Fitongs.	

Jointing Pracedure

The joining between PP-R Pipes $\&$ Fitings is made by welding them together using a fusion welder. These ends come into contact, usually the external surface of pipe and the intemal one of fitings.
Special equipment is necossary: a fusion welder and some heaiing tools. Please refer to the manufacturer's instruction. Here we shall limit our suggestions to setting the thermostat to the right temperature for $\mathrm{PP}-\mathrm{R} 260^{\circ} \mathrm{C}$ and checking its functioring frequently

Iperating Sequence

CUTTING:

Out the Pipe Prependicular and free it from any residual burrs.

CONDUCTIVITY

DIPLAST Rigid PVC Conduits do not support combustion and when the source of ignition is removed they are self-extinguishing hence they are safer than other pipes.

CLEANING:

Prior to welding, the Pipe and fitting should be dried and properly cleaned.

MARKING:

Draw a line on the pipe in order to limit the welding depth.

HEATING:

When the Fusion Welder is ready (Warning Light of Heating Off), Insert Pipe and fiting into the corresponding heating tools at the same axis, without twisting them

WELDING:

Once the heating time shown in the table has passed, quickly removed the Pipe and fitting from the template and press them together up to the limit marked on the pipe.

COOLING:

Wait for the amount of time shown in the table before welding, holding the Pieces in place firmly. Check that is no residues of molten material on the templates atter each welding operations.

CPVC Pipes \& Fittings

DIPLAST is a pctable water distribution system made of chlorinated Polyvinyl Chloride (CPVC) for use single \& Multi Family Homes, apartments, high-rises, Hotel imotels and commercial installation. It has a history of superior performance and competitive prices compared to metal and other alternative piping systems.

In a sentence DIPLAST CPVC pipe is the highest Quality and best-valued hot and cold potable water piping system available. DIPLAST has a design registered for alignment on the plastic fitings.

Ideal for use in Hot \& Cold water applications in:

- Villas and Individual Homes
- Residential Apartments
- Office complexes
- Commercial buildings
- Hotels Hospitals

Features G Benefits of DIPLAST CPVC Piping System

- Quick ,easy \& aesthetic installation
- No corrosion ,leakage, scaling, pitting
- Tough \& reliable
- Freedom from toxicity ,odours and tastes
- Cost effective
- Low thermal expansion
- Fire retardant
- Low thermal conductivity
- Proven operational life of minimum 50 years
- Suitable for use up to $93^{*} \mathrm{C}$
- Being used \& trusted across the world for over 5 decades
- Energy saver
- Quick easy \& aesthetic installation

CPVC System is light in weight, which reduces the transportation, handing and installation costs. Diplast CPVC Pipes \& Fittings have seamless interior walls and require no special tools for cutting.

- No corrosion, Leakage, scaling, pitting DIPLAST CPVC Pipes have excellent corrosion résistance, preventing conlamination bad taste, bad odour \& discolouration of the water with CPVC there is no corrosive by product ensuring the purest form of water to the very last drop. CPVC pipes are unaffected by the low pH of water, coast; air or corrosive soils.
- Lowest Bacterial Growth

As compared to other piping systems bacterial growth in CPVC is far lower.

- Tough \& Relable

DIPLAST CPVC products are highly resilient, tough and durable with high tensile and high impact strength

The standard for the pipe and fitting is given in the table below:
Dimensions for CPVC Pipes as per IS 15778-2007

Nominal Slze(mm)	Size	Nomins Outside Dlamete	Mean Outside Diametar		Oitside Diameltr st any Point		Class 1, SDR 11		
			Min	Max	Min	Max	Avg, Max	Min	Max
20	3	22.2	22.1	223	22.0	22.4	2.5	20	25
25	1	28.6	28.5	28.7	28.4	28.8	3.1	2.6	3.1
32	14.	34.9	34.8	35.0	34.7	35.1	3.7	3.2	3.7
40	11/2	41.3	41.2	41.4	41.1	41.5	4.3	3.8	4.3

CPVC FITTINGS

Coupler	
Size (mm)	Size (inch)
20	$3 / 4$
25	1
32	$11 /$
40	$11 / 2$

Erass Elbow 900	
Size (mm) Size (inch) 20 $1 / 4$ 25 1 32 1% 40 1%	

Elonw 9$]^{\circ}$	
Sizo (mm)	Size (inch)
20	3/4
25	1
32	1\%/4
40	1\%

Brass Tee	
Size (mm)	
20	
25	
32	
32	
40	

TeE	
Size (mm)	Size (inch)
20	$3 / 4$
25	1
32	$1 / 4$
40	$11 / 2$

Brass MTA	
Size (mm)	Size (inch)
20	$1 / 4$
25	1
32	$11 / 4$
40	1%

Reducer Coupler

Size (mm)	Size(inch)
20	$3 / 4$
25	1
32	$11 / 4$
40	$11 / 2$

End Cap

Size (mm)	Size (inch)
20	$3 / 4$
25	1
32	$1 / 4$
40	$1 / 2$

Ball Valve

| Reducer Elfow |
| :---: | :---: |
| Size (mm) Size (inch)
 25×20 $1 \times 3 / 4$ |

Dimensions for CPVC Pipes as per IS 15778-2007

Properties	DIPLAST CPVC	Copper	G)	PP-R
Comasion No Elfect due to supart	No Efecd due to superb chemical resistance	Wil consde over a period dime	Corrodas fasler \& deterioratis	Has certan amount of chemica resistance on quaity
Scsing, Piting and Leaching and ful bore Flow	Absence of scaling piting and leads to ill bore flow	Scaing, pifting and leaching leads to reduce bore flow	Severe scaling, priting and leaching leads to redoced bove flow	Scsing, pitting ard leecting can ocar and redice boee flow
Thermal conducivity \& insulation lenets	Lewer thermal osnductwity reduces hatat loss \& requires reduced insulation lovels	Very high thermal conductity increases reatloss 8 requires	Very high themal conductuity increases hear Loss δ requires high insulation ievols	Higher thermal conduotivty than CPVC, moce heat icss \& requires higher insulation levela.
Baclerial gowth	Exiremety low	More than in CPVC	More dian copper	Higher lhan Cpve
Fire resistance.	LOI of is 608 and hance does not catch fre or sustain buming	Being metalic systom has bettor fire resstance	Being metalic system has beter fire lesistarce	LOH is 18%, hence can easily catch fre and sustain buing
Fire tesistance	Lot ot is 60% and hence does not catch fre or sustain burning	Being metalic systam has better fre passtance	Being retailic system has beter fire ussistarce	LOL is 18\%, hence cen easly catch fre and sustain buing
Instalation	Easy, through oold welding, requing therer man rours. No eloctric heat source requisod, hence onst affective	Requires highty skilad manpower \& elactroheat source	Very sbw and cumbersame, require more nanhoirs.	Jointing process is by heat fusion, requires grealar skil \& electric /heat source.
Leakage	Leakage inswalation for the entire life span of the pping syetem.	Leakage provided carriad out by lighty trained marpower.	Atways susceptible to leakage from day one of instalation	Reiafivety leak free provided high degree of skiled man power is requied
Thermal Exparsion	Lower Laads toless pipe expansions, lass looping and offsels	Although therrel exparsian is lower, the stresses induced are tar grecter.	Although themnal exparsion is lower, he stresses induced are far greater.	Hgher expansion requires more locpingicfisets.
Range off ftings	Widerange of iftrg makes lapout easier and comatt for the archibects consutants, buicers and end users	Limiod range of ffing inwives friguent outing/ welding to achieve the desired layoul	Limilad range of fittings	Nominal range of fttings
Special Tools	Simpe catler or hex-Sew blide and CPVC aotvent coment is adequale for 100% lesk proat jaint and satistactryy plambing	Noods special tools like metal cutting fame toch, solder,flux, ekc, 10 carry put the dested plumbing	Needs heavy tools for pipe cuting theading	Needs special electrical heater to achieve the desirest hof weded joint. Any Jature can resalt in poor plambing

Jointing Procedure of DIFLLSST CPVC PIPE G FITTINGS

Cutting:

In order to make a proper and neat joint, measure the pipe length accurately and make a small mark. Ensure that the pipe and fitings are size compatible. You can easily cut with a wheel type plastic pipe cutter.

De-Burring/Bevelling:

Burrs and fliling can prevent proper contact between tube and fitting during assembly and should be removed from the outside and inside of the pipe. A pocket knife or life is suitable for this purpose. A slight bevel on the end of the tubing will ease entry of the tubing into the fitting socket.

Fitting Preparation:

Using a clean, dry rag, wipe dirf and moisture from the fittings sockets and tubing end. The tubing should make contact with the socket wall $1 / 3$ rd to $2 / 3$ rd of the way into the fitting socket.

Solvent Cement Application:

Use Only CPVC cement or an all - purpose cement confirming to ASTM- 493 or joint failure may result. When making a joint, apply a heavy, even coat of cement to the pipe end . use the same applicator without additional cement to apply a thin coat inside the fitting socket. Too much cement can cause clogged water ways.

Assembly:

Immediately insert the tubing into the fitting socket, rotate the tube $1 / 4$ to $1 / 2$ turn while inserting. This motion ensures even distribution of cement within the joint. Properly align the fitting. Hold the assembly for approximately 10 seconds, allowing the joint to set up.

Set and cure Times:

Solvent cement set and cure times are a function of pipe size, temperature and relative humidity. Curing time is shorter for drier environments, smaller sizes and $g=h i g h e r ~ t e m p e r a t u r e s . ~ I t ~ r e q u i r e s ~ 10 ~ t o ~ 20 ~ m i n u t e s ~ f o r ~ p e r f e c t ~ j o i n t . ~$

Approximate Number of joints that can be made with one Solvent CementLan

Nominal Size	Inch	$1 / 2^{\prime \prime}$	$3 / 1$	1 1"	1.	$1 / 21$	1.	$1 / 21$	2"
	mm	15	20	25	32		40		50
Approx. Number of joints per can	50 ml Can	35	23	15	14		10		07
	118 ml Can	82	55	34	33		23		17
	237 ml Can	164	110	68	66		46		34
	437 ml Can	328	220	136	132		92		68
	946 ml Can	656	440	272	264		184		136

DIPLAST uPVC CILIUMN PIPES

Diplast uPVC column pipes for submersible pumps are designed on latest technology, crafted on the most sophisticated equipment to delivery the desired performance, meeting the challenges of tough \& long duty cycle upto 50 yrs with an unmatched.

Salient Features:

- Corrosion Free \& inert To chemicals
- Very Low friction Losses (10 to 30\% more water)
- Cost effective
- Energy saver
- Long Life
- No Electrictrolytic Deposition
- Easy installation \& handling
- Non Toxic

Application:

- Water rising for submersible and jet pump for irrigation, domestic, industrial mining, chemical distribution.
- A wise replacement for MS ,P P-R, GI, HDPE and SS Column Pipes.
- uPVC snearly inert towards corrosion, chemical reaction and erosion due to which, it is ideally used in salty. sandy and chemically aggressive water without any effect over the years.
e Installation: vertical, horizontal or inclined.

Special features \& identity

Surface finish of this pipe is extremely smooth which reduces the hydraulic

DIPLAST SWR PIPES \& FITTINGS

Diplast Swe Pipes \& Fitings

Product Specification

DIPLAST SWR ISI marked pipes are available in both ring fit \& self-fit pipes with two different class of pipe named as ${ }^{\text {ath }}$ Type A \& Type B. Type A Pipes are recommended for use in ventilation and rain water application while Type B pipes are recommended for soil and waste discharge application. Pipes are available in all sizes in different lengths with single \& double socket.

Ring fit pipes are socketed on automatic online socketing machine with very high degree of accuracy. The socket has groove inside for rubber ring. The rubber ring ensures trouble free water tight joint with allowance to thermal expansion /contraction. One end of the pipes is plain and the other is self socketed with an integral groove to hold the rubber gasket. When joined with a rubber ring, the joint formed is a trouble free, water tight one, ready to take care of thermal expansion/ contraction.

$*$ Nominal Diameter	Mean Outside Diametar		Type A Wall Thickness		Type B Wall Thickness	
	Min	Max	Min	Max	Min	Max
70	75.0	75.3	1.8	2.2	3.2	3.8
90	90.0	90.3	1.8	2.3	3.2	3.8
110	1100	110.3	2.2	2.7	3.2	3.8

Al dimension are in mm and are same for ring fit and selfit Pipes. Only socket geometry is different.

DIPLAST SWR Fittings

DIPLAST SWR fitting are available in both grooved ring and pasting type in full range starting from 75 mm to 110 mm and are fully compatible with DIPLAST SWR Pipes.

UPVC SWR Conventional System for soil waste \& Rain Water

Testing Requirements

DIPLAST SWR uPVC Pipes \& Fittings are subject to strict and continuous control on raw materials , Production, dimensions \& identification. The rigorous testing and quality control throughout the entire process ensures that DIPLAST SWR system is highly reliable and effective in working.

Pipes are subject to tests like

- Tensile strength
- Impact strength
- Reversion
- Stress relief test
- Vicat softening temp test
- Water tightness of joint
- Exposure to sunlight
- Resistance to H 2 SO 4
- Axial Shrinkage

These acceptance criteria for test results obtained are as per widely accepted intemational and national standards.

Thermal expansion and contraction:

Diplast SWR piping system will undergo thermal expansion and contraction like any other thermoplastic materials. The thermal expansion \& contraction depends on the co-effcient of thermal expansion ($5.4 \times 10-2 \mathrm{~mm} /{ }^{\circ} \mathrm{C}$ for PVC), Length of piping and temperature difference encountered by the piping. Normally for drainage \& sewerage system temperature difference of atmosphere will effect more to thermal movements of piping rather than effluent temperature as full bore discharge are normally not happened for prolong time and also these discharges are periodic in nature. For solvent cement weld systems change in direction, offset or expansion loops are recommended while for ring fit joining systems specially designed rubber rings and proper joining of pipes and fittings will take care of length change.

Please refer joining method section of this catalogue for more details:

Fipe Clip Spacing Distavce			
Size (in mm)	7.5	90	110
Horizontal (in mtr.)	0.9	0.9	0.9
Vertical (in mtr.)	1.8	1.8	1.8

DIPLAST SWR Groaved Ring Fittings

Plain Tee

$\begin{array}{lllll}\text { D } & 75 & 90 & 110\end{array}$
Application: Recuired to connect Branch Soilwaste ine to man line at an angle of 87.5°

Bend
D

Application: Recuired to connect adjacent Branch line to main line at an angle of $87.5^{\circ} / 92.5^{\circ}$

\section*{Single Y
 | D | 75 | 90 | 110 |
| :--- | :--- | :--- | :--- |}

[^0]

Single Tee With Door

D	75	90	110

Application: Same as plain tee with option of door for clearing purpose

Cross Tee With Door

D	75	90	110

Application: Same as plain Cross Tee with option of door for cleaning purpose

Bend $45^{\text {Bl }}$

D	75	90	110

Mosty used as a shoe for rain
water drainage ine. Can also be used
for providing a 450 turn to the pipe line.

Function is same as a plain tend with a threaded door for cleaning purpose

Reducer		
D	75	90
Used to reduce a main line		

Coupler			
D	75	90	110

To Connection two Length of Pipe.

[^0]: To Connect a branch soil waste pipaline to the main Vertical line at an angle of 45 degree

